Symposium

R pour ornithologue

Points de vue des utilisateuRs et programmeuRs

R for Ornithologists

Perspectives from useRs to programmeRs (to birdeRs)

10:30-14:15 Salle des Plaines II

Stefanie E. LaZerte

R for Ornithologists

How R can benefit the study of Ornithology

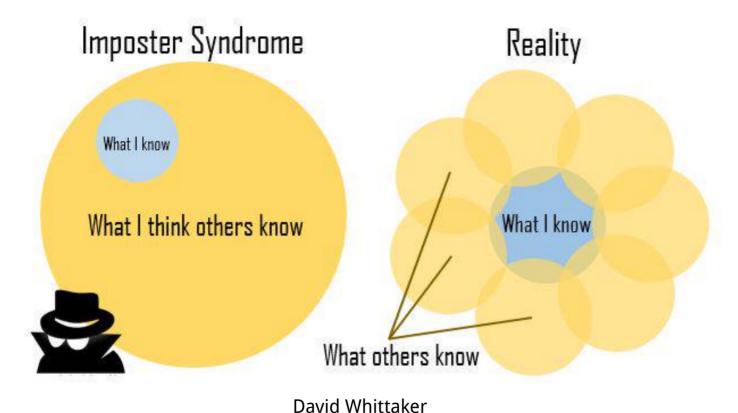
A statistical programming language and environment

(free and open source!)

A statistical programming language and environment

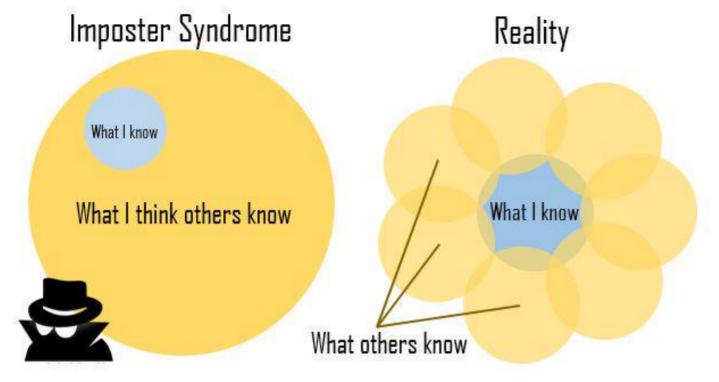
(free and open source!)

R uses packages


- Packages extend R (i.e. nlme and lme4 add mixed modeling)
- Packages can be written by anyone
- Some are ok, some are good, some are AMAZING
- Base R is R without any extra packages (also good)

There are 1000's of packages!

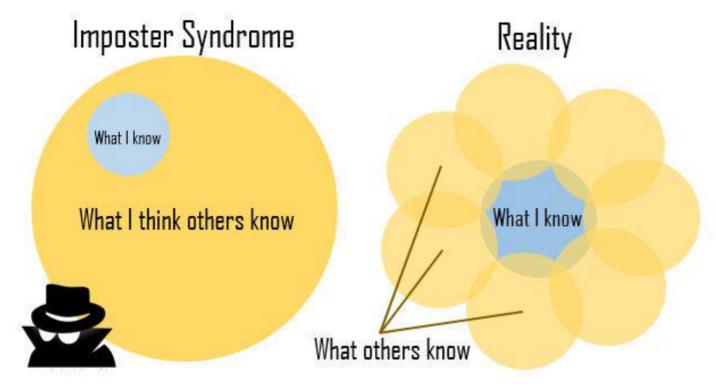
```
# Get in circle around city
 circle <- data.frame()</pre>
 cutoff <- 10
  for(i in unique(gps$region)) {
    n <- nrow(gps[gps$region == i,]) ##number of IDs</pre>
   if(i == "wil") tmp <- geocode("Williams Lake, Canada")</pre>
    if(i == "kam") tmp <- geocode("Kamloops, Canada")</pre>
    if(i == "kel") tmp <- geocode("Kelowna, Canada")</pre>
    temp <- data.frame()</pre>
    for(a in 1:n){
      if(a <= cutoff) temp <- rbind(temp, qcDestination(lon = tmp$lon,</pre>
                                                           lat = tmp$lat.
                                                           bearing = (a*(360/(cutoff))-360/(cutoff)),
                                                           dist = 20.
                                                           dist.units = "km",
                                                           model = "WGS84"))
      if(a > cutoff) temp <- rbind(temp, gcDestination(lon = tmp$lon,</pre>
                                                          lat = tmp$lat.
                                                          bearing = ((a-cutoff)*(360/(max(table(gps$region)
))-10))-360/(max(table(gps$region))-cutoff)),
                                                          dist = 35.
                                                          dist.units = "km",
                                                          model = "WGS84"))
    circle <- rbind(circle, cbind(temp,
                                    region = i,
                                    hab = gps$hab[gps$region == i],
                                    spl = gps$spl.orig[gps$region == i],
```


Impost R Syndrome

Impost**R** Syndrome

Impost R Syndrome

Impost**R** Syndrome


Impost R Syndrome

David Whittaker

Moral of the story?

Make friends, code in groups, learn together and don't beat yourself up

Impost**R** Syndrome

David Whittaker

Using R in the undergraduate biology classroom: Hurdles, hints, and aha moments (Here @ 1:45pm)

Ornithologists and R

What I **am not** going to do

- Teach you R
- Talk about statistics

Ornithologists and R

What I **am not** going to do

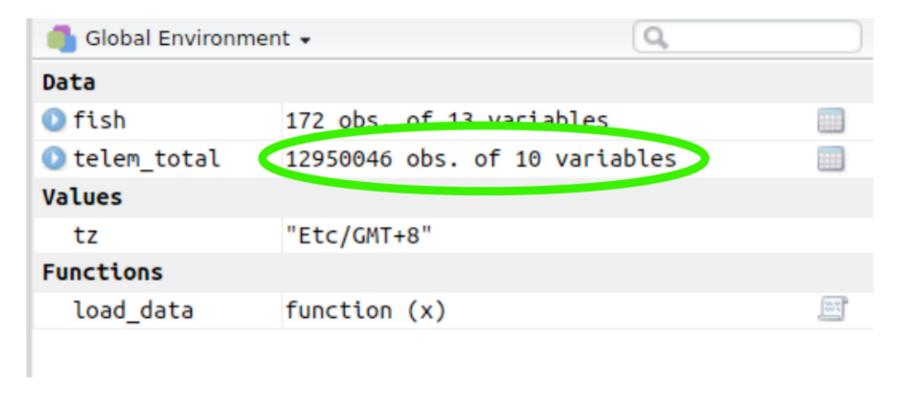
- Teach you R
- Talk about statistics

What I **am** going to do

- Explain how R can benefit ornithologists
- Showcase useful packages
- Give you resources to get started

Ornithologists and R

What I am not going to do


- Teach you R
- Talk about statistics

What I **am** going to do

- Explain how R can benefit ornithologists
- Showcase useful packages
- Give you resources to get started
- Inspire you to take your R to the next level!

R is powerful!

R is powerful!

The blessing and curse of automated data collection:

R and dealing with big data in a modern age

(Here @ 10:45am)

Super-computing with R:

Harnessing the power of the cloud to analyze big-bird-data, or just run your simulations, models, and cross-validations faster

(Here @ 11:15am)

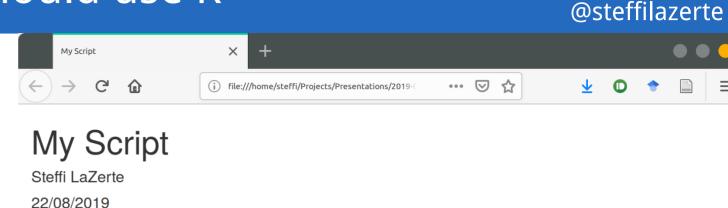
Reproducible Science

• Scripts are records of your work

```
m <- lm(mpg ~ cyl, data = mtcars)
summary(m)</pre>
```

Reproducible Science

Scripts are records of your work

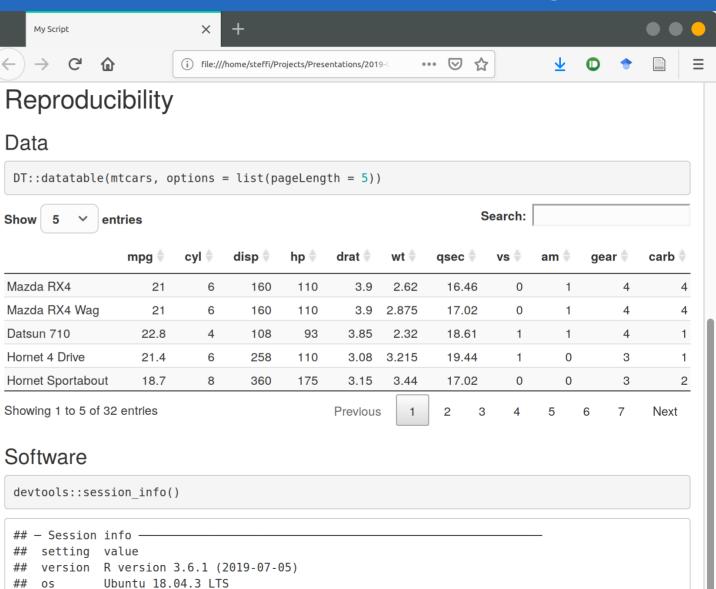

```
m <- lm(mpg ~ cyl, data = mtcars)
summary(m)</pre>
```

Scripts can be compiled into pdf/html reports with <u>rmarkdown</u> and <u>knitr</u>
 (In RStudio: File > Compile Report)

Reproducible Science

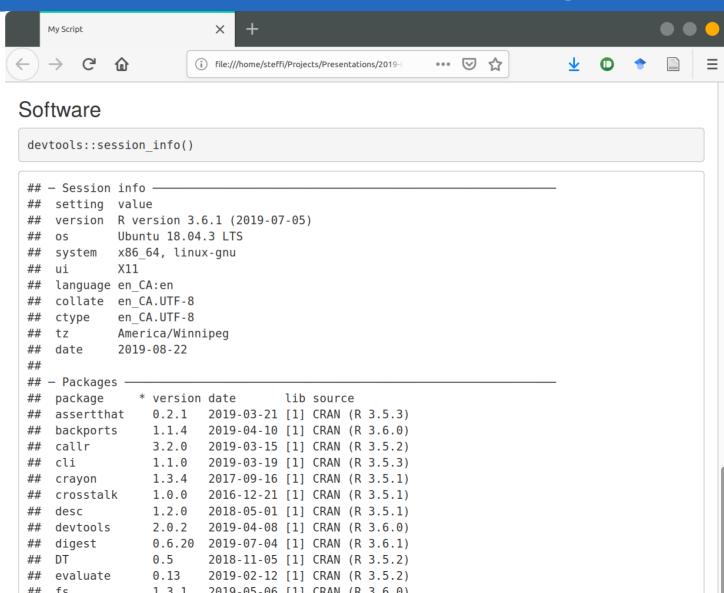
Keep track of code AND output

Analysis


```
m <- lm(mpg ~ cyl, data = mtcars)
summary(m)
```

```
## Call:
## lm(formula = mpg ~ cyl, data = mtcars)
## Residuals:
      Min
              1Q Median
  -4.9814 -2.1185 0.2217 1.0717 7.5186
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.8846
                          2.0738 18.27 < 2e-16 ***
                          0.3224 -8.92 6.11e-10 ***
## cyl
               -2.8758
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.206 on 30 degrees of freedom
## Multiple R-squared: 0.7262, Adjusted R-squared: 0.7171
## F -+-+----- 70 FC --- 1 ---- 20 DE -------- C 112- 10
```

@steffilazerte


Reproducible Science

- Keep track of code AND output
- Keep track of data

Reproducible Science

- Keep track of code AND output
- Keep track of data
- Keep track of software

Find Data!

- Many online data sources are accessible through R
- Reproducible science includes data sources!

Find Data!

- Many online data sources are accessible through R
- Reproducible science includes data sources!

• Observations from ebird with auk

Find Data!

- Many online data sources are accessible through R
- Reproducible science includes data sources!

- Observations from <u>ebird</u> with <u>auk</u>
- Observations from <u>NatureCounts</u> with <u>naturecounts</u> (Here @ 11:00am)

Find Data!

- Many online data sources are accessible through R
- Reproducible science includes data sources!

- Observations from ebird with auk
- Observations from <u>NatureCounts</u> with <u>naturecounts</u> (Here @ 11:00am)
- Recordings of vocalizations from <u>xeno-canto</u> with <u>warbleR</u>

Find Data!

- Many online data sources are accessible through R
- Reproducible science includes data sources!

auk

- Observations from <u>ebird</u> with <u>auk</u>
- Observations from <u>NatureCounts</u> with <u>naturecounts</u> (Here @ 11:00am)
- Recordings of vocalizations from <u>xeno-canto</u> with <u>warbleR</u>
- Weather data from Environment and Climate Change Canada with weathercan

Find Data!

- Many online data sources are accessible through R
- Reproducible science includes data sources!

- Observations from ebird with auk
- Observations from <u>NatureCounts</u> with <u>naturecounts</u> (Here @ 11:00am)
- Recordings of vocalizations from <u>xeno-canto</u> with <u>warbleR</u>
- Weather data from <u>Environment and Climate Change Canada</u> with <u>weathercan</u>
- DNA Sequences from <u>GenBank</u> with <u>phylotaR</u>

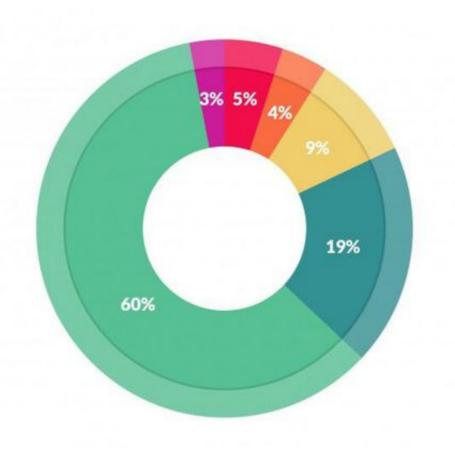
Find Data!

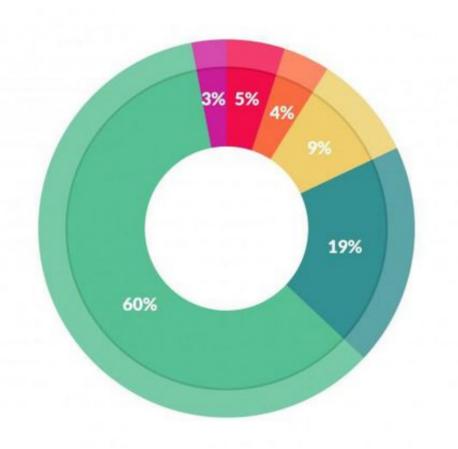
- Many online data sources are accessible through R
- Reproducible science includes data sources!

- Observations from ebird with auk
- Observations from <u>NatureCounts</u> with <u>naturecounts</u> (Here @ 11:00am)
- Recordings of vocalizations from <u>xeno-canto</u> with <u>warbleR</u>
- Weather data from <u>Environment and Climate Change Canada</u> with <u>weathercan</u>
- DNA Sequences from <u>GenBank</u> with <u>phylotaR</u>
- Taxonomic data with **taxize**

Find Data!

- Many online data sources are accessible through R
- Reproducible science includes data sources!


- Observations from <u>ebird</u> with <u>auk</u>
- Observations from <u>NatureCounts</u> with <u>naturecounts</u> (Here @ 11:00am)
- Recordings of vocalizations from <u>xeno-canto</u> with <u>warbleR</u>
- Weather data from <u>Environment and Climate Change Canada</u> with <u>weathercan</u>
- DNA Sequences from <u>GenBank</u> with <u>phylotaR</u>
- Taxonomic data with **taxize**
- IUCN Red Lists with rredlist


Dealing with Data

What data scientists spend the most time doing

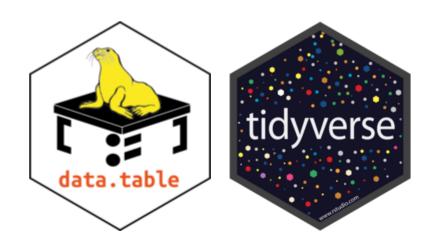
- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

Dealing with Data

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

Dealing with Data


- Reproducible!
- Cleaning
 - Fix typos
 - Fix/explore odd/missing values
- Filtering
- Summarizing
- Transforming
- Exploring

Dealing with Data

- Reproducible!
- Cleaning
 - Fix typos
 - Fix/explore odd/missing values
- Filtering
- Summarizing
- Transforming
- Exploring

Packages to Use

- Base R (i.e. no special packages)
- data.table (http://r-datatable.com)
- tidyverse.org)
 - Suite of packages
 - Learn more: R for Data Science

100's of Specialized packages

100's of Specialized packages

For example...

• Phylogenetic comparative analyses adephylo

100's of Specialized packages

- Phylogenetic comparative analyses adephylo
- Bioacoustic analyses with **seewave**

100's of Specialized packages

- Phylogenetic comparative analyses <u>adephylo</u>
- Bioacoustic analyses with **seewave**
- Automatic detection of vocalizations with monitor

100's of Specialized packages

- Phylogenetic comparative analyses <u>adephylo</u>
- Bioacoustic analyses with **seewave**
- Automatic detection of vocalizations with monitoR
- Animal home ranges with <u>adehabitatHR</u>

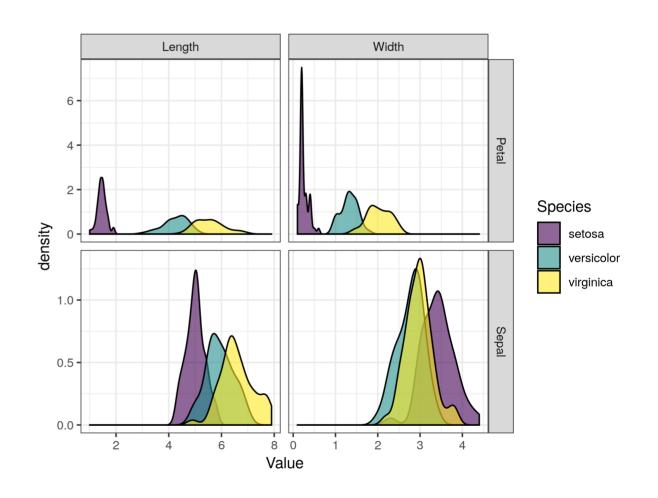
100's of Specialized packages

- Phylogenetic comparative analyses <u>adephylo</u>
- Bioacoustic analyses with **seewave**
- Automatic detection of vocalizations with monitoR
- Animal home ranges with <u>adehabitatHR</u>
- Hierarchical Bayesian modelling of Breeding Bird Survey data with bbsBayes (Here @ 11:30am)

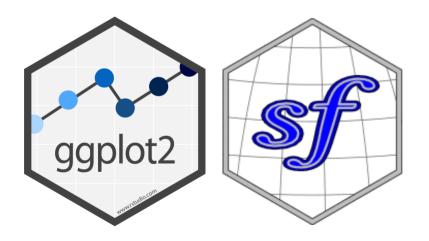
100's of Specialized packages

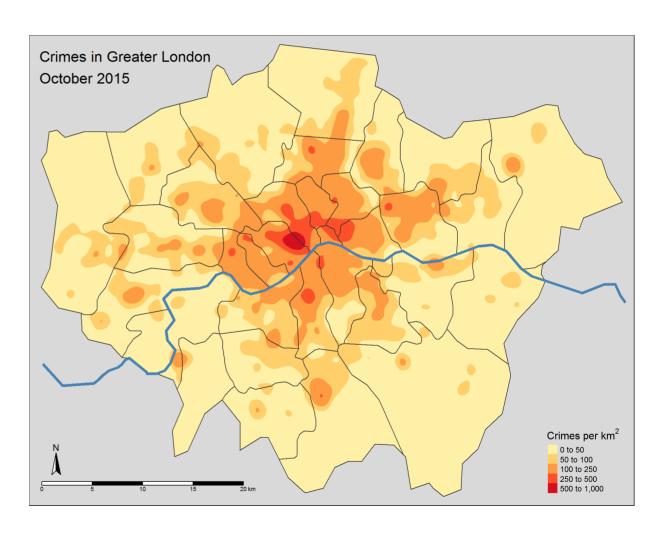
- Phylogenetic comparative analyses <u>adephylo</u>
- Bioacoustic analyses with **seewave**
- Automatic detection of vocalizations with monitoR
- Animal home ranges with <u>adehabitatHR</u>
- Hierarchical Bayesian modelling of Breeding Bird Survey data with bbsBayes (Here @ 11:30am)
- Systematic reviews with Litsearchr (Here @ 1:30pm)





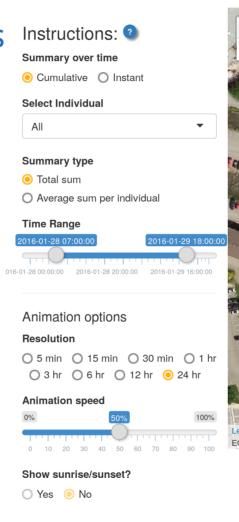
Dissemination and Visualizations

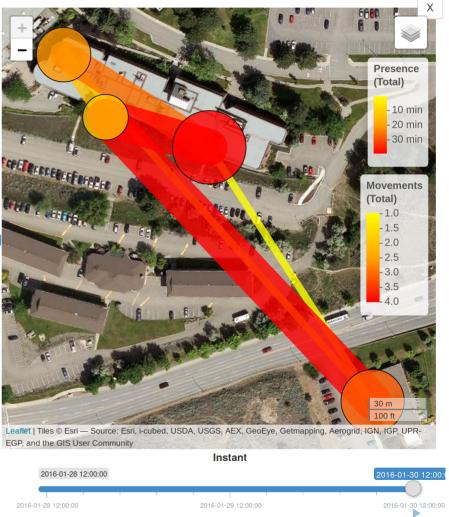

• Beautiful plots with ggplot2



Dissemination and Visualizations

- Beautiful plots with ggplot2
- Complex maps with **sf**, **tmap**




@steffilazerte

Dissemination and Visualizations

- Beautiful plots with ggplot2
- Complex maps with <u>sf</u>, <u>tmap</u>
- Interactive visualizations with <u>shiny</u>

Finch movements

Find More Packages!

- Not an exhaustive list!
- Check out package collections
 - metaverse (https://rmetaverse.github.io/)
 - ropensci (https://ropensci.org/)
 - tidyverse (https://tidyverse.org/)
- Look in journals, i.e. Methods in Ecology and Evolution
- Look in methods sections of articles

Find More Packages!

- Not an exhaustive list!
- Check out package collections
 - metaverse (https://rmetaverse.github.io/)
 - ropensci (https://ropensci.org/)
 - tidyverse (https://tidyverse.org/)
- Look in journals, i.e. Methods in Ecology and Evolution
- Look in methods sections of articles

Always cite packages and package versions!

Symposium: R for Ornithologists

Stay tuned for 6 more R-related presentations

2:00pm Round-Table Discussion on Ornithological perspectives on R

Stay tuned for 6 more R-related presentations

2:00pm Round-Table Discussion on Ornithological perspectives on R

Thank you!

Thanks to Denis LePage for help on the French version

@steffilazerte steffilazerte

steffilazerte.ca

sel@steffilazerte.ca

